ARTICLES OF ASSOCIATION OF

Beijing Jingneng Clean Energy Co., Limited 北京京能清潔能源電力股份有限公司

(I c. .. a ed e Pe.. e', Re.. b c. f C a .. ed ab)

Contents

$$\sum_{\lambda \in \Lambda} 1 \qquad 1 = \int_{-\lambda} \int_{$$

$$\sum_{k=1}^{\infty} 2 \qquad \sum_{k=1}^{\infty} \sum_{k=1}^{\infty}$$

$$\mathbf{A}^{\mathbf{A}} = \mathbf{A}^{\mathbf{A}} \mathbf{$$

$$\mathbf{A} = \mathbf{A} =$$

$$\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{x}} \mathbf{$$

$$\int_{W^{*}} 1 \int_{W^{*}} \int_$$

$$\sum_{n \in \mathbb{N}} \frac{2}{n} \sum_{n \in \mathbb{N}} \frac{1}{n} \sum_{n \in$$

$$A_{\text{lac}} = A_{\text{lac}} + A_{$$

$$\mathbf{A}^{-1} = \mathbf{A}^{-1} \mathbf{$$

$$\mathbf{A}^{-} = \mathbf{A}^{-} \mathbf{A}^{-}$$

 $\frac{1}{1} = \frac{1}{1} = \frac{1$

Article 2

Internet and the second of the

A (A_{1} A_{1}

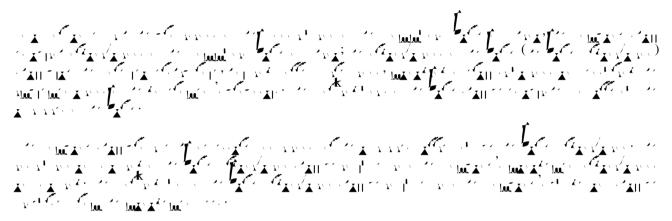
Article 3

A
$$(1 + 1)$$
 $(1 + 1)$ $(1$

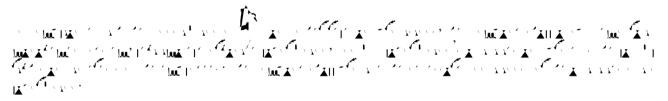
Article 5

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Article 6


Article 7

$$\begin{array}{c} \mathbf{A}_{\mathbf{1}} & \cdots & \mathbf{M}_{\mathbf{A}} & \mathbf{A}_{\mathbf{1}} & \mathbf{A}$$


Article 8

Article 9

 $\mathbf{Y}_{\mathbf{r}} = [\mathbf{r} \mathbf{Y}_{\mathbf{r}}, \dots, \mathbf{Y}_{\mathbf{r}}, \mathbf{Y}_{\mathbf{r}}, \mathbf{Y}_{\mathbf{r}}, \dots, \mathbf{Y}_{\mathbf{r}}, \dots,$

Article 11

Article 12

Article 13

$$= \sum_{i=1}^{n} \sum_$$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Chapter 3 Shares, Registered Capital and Transfer of Shares

Article 15

$$\frac{\partial f_{1}}{\partial t} = \frac{\partial f_{1}}$$

Article 16

$$\begin{array}{c} & \mathcal{A}_{\mathrm{II}} = \mathcal{A}_{\mathrm{II}$$

Article 17

Article 18

$$\frac{\partial f_{1}}{\partial t_{1}} = \frac{\partial f_{1}}{\partial t_{1}} + \frac{\partial f_{2}}{\partial t_{2}} + \frac{\partial f_{2}}{\partial t_{2}}$$

Article 19

 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[$

 $\begin{array}{c} & \mathcal{L}_{\mathbf{M}} = \left\{ \mathcal{L}_{\mathbf{M}} =$

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

 $\begin{array}{c} A_{n} \in \mathbb{C} \xrightarrow{} \mathbb{C} \xrightarrow$

 $= \prod_{k=1}^{n} \sum_{i=1}^{n} \sum$

Article 21

A (2011) (2011) (35) (2011) (2011) (35) (2011) (2011) (35) (2011

A
$$\mathcal{L}_{\mathcal{L}}$$
 $\mathcal{L}_{\mathcal{L}}$ $\mathcal{L}_{\mathcal{L}}$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Article 23

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Article 24

$$\frac{1}{2} \left[\frac{1}{2} \left$$

A CALL A

Article 27

An a start with a second for a second for the second secon

Article 28

Article 29

 $\mathbf{x} = \mathbf{x} + \mathbf{x} +$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$

Chapter 4 Increase, Reduction and Repurchase of Shares

Article 30

$$\begin{array}{l} \mathbf{A} = \left(\sum_{\mathbf{x} \in \mathcal{X} \times \mathcal{X} \in \mathcal{X} \times \mathcal{X}} \left| \mathbf{x} \right|_{\mathbf{x} \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Y}} \left| \mathbf{x} \right|_{\mathbf{x} \in \mathcal{X} \times \mathcal{Y} \times \mathcal$$

Article 31

$$\sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{i$$

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial$

- $(4) \quad A_{\mathbf{1}}_{YXY} \dots \mathcal{A}_{\mathbf{1}}_{YXY} \dots \mathcal{A}_{\mathbf{1}}_{\mathbf{1}}_{\mathbf{1}} \dots \mathcal{A}_{\mathbf{1}}_{\mathbf{1}}_{\mathbf{1}} \dots \mathcal{A}_{\mathbf{1}}_{\mathbf{1}} \dots \mathcal{A}_{\mathbf{1}} \dots \mathcal{A}_{$
- $(6) \quad A_{i} \quad \cdots \quad \mathbf{A}^{i} \quad \mathbf{$
- (7) $\mathbf{X}^{\mathbf{T}} = \lim_{\lambda \to \infty} \mathbf{X}^{\mathbf{T}} = \lim_{\lambda \to \infty}$

Article 34

- (1) $\begin{array}{c} \mathbf{k} \\ \mathbf{\lambda}^{-1} \\ \mathbf{k}^{-1} \\$
- $(3) \qquad (3) \qquad (3)$
- (4) $(4) \qquad \mathcal{I}_{\mathbf{M}} = \mathcal{I$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ $\sum_{k=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$ and the second of the second second second of the second o $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Article 36

Article 37

 $= \sum_{i=1}^{n} \sum$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

- - 2. $\sum_{k=1}^{k} \sum_{i=1}^{k} \sum$
- $(3) \qquad \lim_{\lambda \to \infty} \sum_{\lambda \to \infty$
 - $1. \qquad A_{\mathbf{1}}\mathbf{I}_{_{K'X'Y''Y''}} \rightarrow \mathcal{L}_{\mathbf{1}}^{\mathcal{L}}\mathbf{I}_{\mathbf{1}} \rightarrow \mathbf{I}_{\mathbf{1}}^{\mathcal{L}}\mathbf{I}_{\mathbf{1}}^{\mathcal$
 - $2. \qquad A_{\underline{\mathsf{h}}\underline{\mathsf{x}}^{(n)}} = \underline{\mathsf{h}}\underline{\mathsf{x}}^{(n)} + \underline{\mathsf{x}}\underline{\mathsf{x}}^{(n)} + \underline{\mathsf{x}}\underline{\mathsf{$
 - 3. $\mathbf{\hat{C}}_{\mathbf{1}\mathbf{A}} = \mathbf{\hat{C}}_{\mathbf{1}\mathbf{A}} = \mathbf{\hat{$
- $(4) \quad A \quad \mathcal{L} \quad \mathcal{L}$

Chapter 5 Financial Assistance for Purchase of Company Shares

Article 39

$$\frac{\partial f_{1}}{\partial t_{1}} = \int \left[\frac{\partial f_{1}}{\partial t_{2}} + \frac{\partial f_{2}}{\partial t_$$

Article 40

- (1) ;

- $(4) \xrightarrow{}_{\mathcal{V}} \mathbf{X} \cdot \mathbf{X} \cdot$

 $= \frac{\mathbf{k}}{\mathbf{k}} = \frac{\mathbf{k}}{\mathbf{$

Article 41

$$\mathbf{A} = \{\mathbf{A} \in [1, \dots, n], \dots, \mathbf{A} \in [1, \dots, n], \dots,$$

- (2) $(2) \quad (2) \quad$
- $(3) \qquad \sum_{k} \mathcal{C}_{1} \mathbf{1}_{k} \mathbf{1}_{k$

⊠ 12 ⊠

- (5) $\int_{\mathcal{A}_{1}} \int_{\mathcal{A}_{2}} \int_{\mathcal{A}_{2}}$

Chapter 6 Share Certificates and Register of Shareholders

Article 42

Article 43

Article 44

 $= \sum_{i=1}^{n} \sum_$

Article 45

 $\begin{array}{c} & \left(\prod_{i=1}^{n} \left(\prod_{i=1}^$

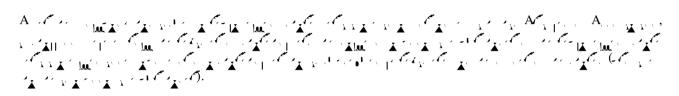
 $\begin{array}{c} \mathbf{k}_{1} & \mathbf{k}_{2} \\ \mathbf{k}_{2} & \mathbf{k$

Article 46

$$\sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{$$

$$(3) \xrightarrow{\mathsf{N}}_{\mathcal{A}_{1}} \xrightarrow{\mathsf{M}}_{\mathcal{A}_{2}} \xrightarrow{\mathsf{M}}$$

Article 49


Article 52

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

- $(1) \qquad (1) \qquad (1)$
- $(3) \qquad (3) \qquad (3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$
- $(4) \qquad (4) \qquad (4)$

 $\frac{\partial g_{1,2}}{\partial x_{1,2}} = \frac{\partial g_{1,2}}{\partial x_{1,2}} + \frac{\partial g_{1,2}}{\partial x$

- $(6) \qquad (6) \qquad (6)$

Article 54

Chapter 7 Rights and Obligations of Shareholders

- $(1) \qquad (1) \qquad (1)$

یکوا مکلک برای مود با با بدید این که با میکه مکنه میکند. این این میکند برای میکند از میکند این میکند این میکند بعدایک ایک ایک بالا ایک بالا ایک این میکند میلی میلی این میکند این میکند این ایک بداری ایک میکند. این که تعدای این میکند این میلی این میکند این میکند این میکند. این میکند این میکند این میکند این میکند ایک میل

- $(1) \qquad (1) \qquad (1)$
- $(2) \qquad (\mathcal{C}_{\bullet}) \qquad (\mathcal{C}_{\bullet})$
- $(3) \qquad (3) \qquad (1) \qquad (1)$
- $(4) \qquad (4) \qquad (4)$

$$= \frac{1}{2} \prod_{i=1}^{n} \lim_{\lambda \to \infty} \frac{1}{\lambda} = \frac{1}{2} \prod_{i=1}^{n} \frac{1}{\lambda} \lim_{\lambda \to \infty} \frac{$$

- $\begin{pmatrix} & \\ & \end{pmatrix} \quad \begin{pmatrix} & & \\ &$
- $\begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \begin{pmatrix} c_{2} \\ c_{2} \end{pmatrix} = \begin{pmatrix} c$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$

Article 57

$$= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum$$

Article 59

$$= \frac{1}{2} \left\{ \frac{1}{2}$$

Article 60

$$= \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{$$

$$(1) \qquad (\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2$$

$$(3) \qquad \underbrace{\mathbf{x}}_{\mathbf{x}} \\ \underbrace{\mathbf{x}}_{\mathbf{x}}$$

$$(4) \qquad \mathbf{x}_{1} \cdots \mathbf{x}_{N} (\mathbf{x}_{1} \cdots \mathbf{x}_{N} ($$

κ.

$$\frac{\partial f_{1}}{\partial t} = \frac{\partial f_{2}}{\partial t} = \frac{\partial f_{2}}$$

 $(\mathbf{x}_{1},\mathbf{x}_{2},$

- $(2) \qquad A_{-} \mathcal{C}_{-} \otimes \mathcal{L}_{\mathbf{A}} \otimes \mathcal{C}_{-} \otimes \mathcal{C}_{\mathbf{A}} \otimes \mathcal{C}_{-} \otimes \mathcal{C}_{\mathbf{A}} \otimes \mathcal{C}_{-} \otimes \mathcal{C}_{\mathbf{A}} \otimes \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \otimes$
- $(3) \quad A_{-n} \mathcal{C}_{-1} \mathcal{L}_{\mathbf{A}} \xrightarrow{} \mathcal{C}_{\mathbf{A}} \mathcal{C} \mathcal{C}} \mathcal{C}_{\mathbf{A}} \mathcal{$

Chapter 8 General Meeting

Section 1

$$(11) \quad A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)}} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)}} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)}} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} A_{|\mathbf{a}_{1}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n)} \cdots n_{k}^{(n$$

$$(1) \quad A_{\mathcal{A}} = \left\{ \begin{array}{ccc} \mathbf{A} & \mathbf$$

$$(2) \quad A_{\lambda} = \left\{ \begin{array}{ccc} A_{\lambda} & A_{\lambda$$

$$(3) \qquad (3) \qquad (3)$$

$$(4) \qquad \mathbf{A}_{\mathbf{x},\mathbf{x}'} \mathbf{I}_{\mathbf{x}'} \mathbf{I}_$$

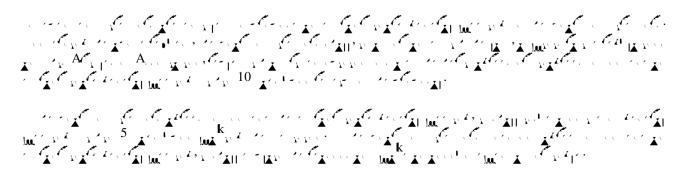
$$(5) \qquad (5) \qquad (5)$$

$$= \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty}$$

Article 67

$$\frac{\partial (A_{1},A_{2}$$

Article 69


(2) $\lim_{x \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$

$$(3) \qquad (3) \qquad (3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$$

(5)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$$

Article 70

 $= \frac{1}{2} \sum_{i=1}^{N} \sum_{i=$

 $\frac{1}{2} \left[\frac{1}{2} \left$

Article 73

 $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{10\%}{2} \right) = \frac{10\%}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) =$

Section 3 Proposals and Notices of General Meeting

Article 75

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

Article 76

Article 77

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

 $\frac{1}{2} \left[\frac{1}{2} \left$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$$

(1) $\int_{X} \int_{X} \int_{X}$

- $(8) \qquad (8) \qquad (3) \qquad (4) \qquad (4)$

Article 79

$$\begin{array}{c} \mathbf{x} & \mathbf$$

- $(2) \qquad (2) \qquad (2)$

⊠ 27 ⊠

$$\overset{\mathbf{E}}{=} \overset{\mathbf{A}}{=} \overset{\mathbf{A}}{=$$

 $\frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^$

Article 81

$$\begin{array}{c} \mathbf{A} = \left(\left\| \frac{1}{2} \right)^{-1} \left\| \frac{1}{2} \right\|_{\mathcal{X}} + \left\| \left\| \frac{1}{2} \right\|_{\mathcal{X}} + \left\| \frac{1$$

Article 82

$$= \frac{1}{2} + \frac{$$

Section 4 Convening General Meeting

$$\begin{array}{c} \mathbf{A}_{\mathbf{I}_{1}}, \mathbf{A}_{\mathbf{I}_{2}}, \mathbf{A}_{\mathbf{I}_{2}},$$

$$(3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$$

Article 85

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\int_{\mathbb{R}^{n}} \left[\int_{\mathbb{R}^{n}} \left[\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n$

(4)
$$\mathbf{A} = \mathbf{A} = \mathbf{A$$

 $(7) \qquad \lim_{\lambda \to \infty} \mathcal{C}_{\lambda} = \mathcal{C}$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 87

 $\begin{array}{c} \mathbf{A}_{i} = \begin{pmatrix} \mathbf{C}_{\mathbf{m}} \mathbf{v}_{i} \mathbf{1}_{i} & \cdots & \mathbf{v}_{i} \mathbf$

 $\mathbf{x} = \mathbf{x} =$

Article 88

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 89

Article 92

سند میموند می بد سمول با سمی سرم با مقطر کمی مربط ویکی بد سمول با سمی سرم سرم با با با سمی مربط با با میکند. ت بیم سیمو القرم بیکی مربط بالا سمان با تقدر الذیکی بد سمول با سمی سرم با با تکفی مربط با با منافقاً کمی مسکون با بقرم سیمو بیمان مربط با با با با میکند سیمان با بد تکوی بد سمول با سمی مربط با با تکوی مربط با با با با تکون بی

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 93

Article 94

 $= \frac{1}{2} + \frac{$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$$

Article 96

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

Article 97

 $\frac{\partial (\mathcal{A}_{i}, \mathcal{A}_{i})}{\partial (\mathcal{A}_{i})} = \frac{\partial (\mathcal{A}_{i})}{\partial (\mathcal{A}_{i})} = \frac{\partial (\mathcal{A}_{i})}{\partial$

- (2) Luc Marine Luc Marine Luc Andrew Luc Marine Luc Mar

- (6) $\underset{\mathcal{M}}{\longrightarrow} \mathbf{A} = (\mathbf{1}, \mathbf{1}, \mathbf{1},$

Article 98

Article 99

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} =$

⊠ 32 ⊠

Section 5 Voting and Resolutions at General Meetings

Article 100

$$\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$$

Article 101

$$\mathbf{x} = \left\{ \begin{array}{cccc} \mathbf{x} & \mathbf{x$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i$$

Article 102

Article 103

$$\begin{array}{c} \mathbf{k} \\ \mathbf{\lambda}^{*} \cdot \mathbf{k}$$

$$\mathbf{x} = \mathbf{x} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{z} +$$

Article 106

Article 107

 $\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} + \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} \right\} + \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} \right\} + \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} \right\} + \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} \right\} + \left\{ \frac{1}{2} \left\{ \frac{1}{2}$

Article 108

 $\frac{1}{2} \left\{ \frac{1}{2} \left$

Article 109

Article 110

Chapter 9 Special Procedures for Voting at Class Meeting

Article 111

Article 112

$$\frac{\partial \lambda}{\partial x} = \frac{\partial \lambda}{\partial x} =$$

Article 113

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$$

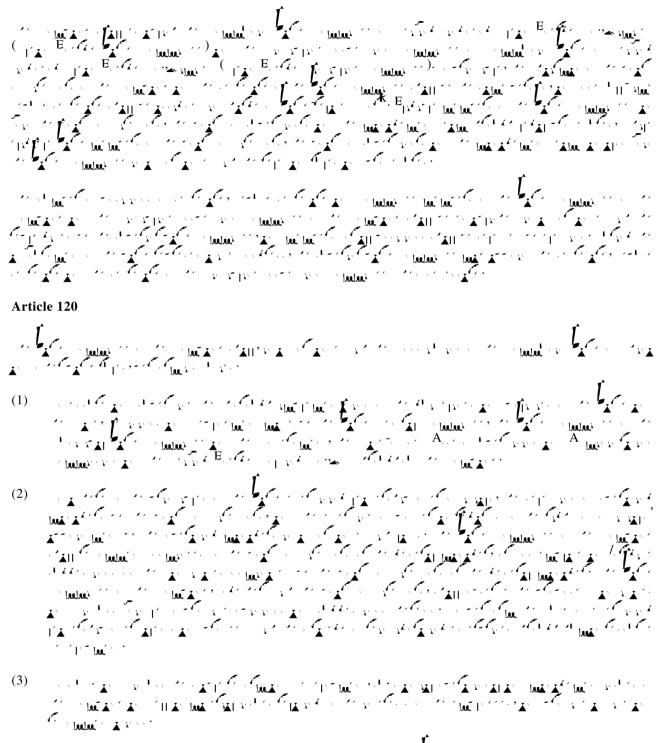
- $\frac{2}{|\mathbf{x}|^{2}} = \frac{1}{|\mathbf{x}|^{2}} \frac{$
- 3. $\mathbf{x} \in [\mathbf{w} \in \mathbf{x}] \xrightarrow{\mathcal{C}} [\mathbf{w} \in \mathbf{$
- $4. \qquad \mathbf{A} = \frac{1}{\mathbf{A}} \left[\frac{1}{2} \sum_{\mathbf{M} \in \mathbf{A}} \frac{1}{\mathbf{A}} \sum_{\mathbf{M} \in \mathbf{A}} \frac{1}{2} \sum_{\mathbf{M} \in \mathbf{A}}$
- 5. $\mathbf{x} = \mathbf{x} + \mathbf{y} + \mathbf{z} + \mathbf{z}$

⊠ 35 ⊠

- 9. A sulton of the second of the second second of the second seco
- 10. $\mathbf{A}^{(\mathbf{x}_{1})} \stackrel{\mathcal{C}_{\mathbf{x}_{1}}}{\longrightarrow} \stackrel{\mathcal{C}_{\mathbf{x}_{2}}}{\longrightarrow} \stackrel{\mathcal{C}_{\mathbf{x}_{2}}}{$
- $11. \quad \mathcal{C}_{i} \in \mathcal{C}_{i} \times \mathcal{C$
- 12. $\mathbf{x} \in \mathbf{x} \in \mathbf{x$

 $\frac{1}{2} \left[\frac{1}{2} \left$

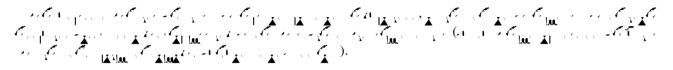
$$\frac{1}{2} \left[\frac{1}{2} \left$$


Article 117

$$\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$$

- $(3) \qquad (3) \qquad (3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$

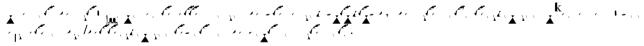
Chapter 10 Party Committee



 $(4) \qquad \begin{pmatrix} \mathbf{k} & \mathbf{i} \\ \mathbf{k} & \mathbf{k} \\ \mathbf{k} &$

- $\begin{array}{c} () & \underset{\mathbf{x}^{(1)} \in \mathcal{A}}{\overset{\mathbf{x}^{(2)}}}{\overset{\mathbf{x}^{(2)}}}{\overset{\mathbf{x}^{$

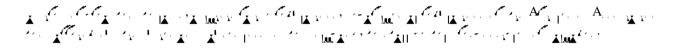
 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$



Article 126

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

Article 127



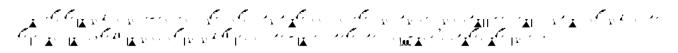
Article 128

Article 130

Article 131

 $\begin{array}{c} \mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{2}$

Article 132


 $\mathbf{A}_{\mathbf{1},\mathbf{X}},\ldots,\mathbf{a}_{\mathbf{N$

Article 133

Article 134

 $\sum_{i=1}^{n} |\log \mathbf{x}_{i} - \sum_{i=1}^{n} ||\mathbf{x}_{i} - \sum_{i=1}^{n} ||\mathbf{x}$

⊠ 41 ⊠

Section 3 Board of Directors

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Article 137

$$(1) \quad (1) \quad (1)$$

- $(4) \qquad (4) \qquad (4)$

(5)
$$(1 + 1) = \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{i=$$

(10)
$$(11) \quad (11) \quad (1$$

- (11) $(11) \qquad (11) \qquad ($
- (13) $(13) \quad (13) \quad ($
- $(14) \quad (14) \quad$
- (15) $k_{1} = k_{1} + k_{1} + k_{2} + k_{3} + k_{4} + k_{5} +$
- (16) $\lim_{\lambda \to \infty} \sum_{\lambda \to \infty}$

$$\mathbf{E}_{\mathbf{x}} = \sum_{\mathbf{x}} \sum_{\mathbf{$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} =$$

Article 140

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $\begin{array}{c} \mathbf{E}_{\mathbf{x}} & \dots & \mathbf{E}_{\mathbf{x}} & \mathbf{E}_{\mathbf{$

$$\frac{1}{2} \left[\frac{1}{2} \left$$

 $\sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \frac{1}{2} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n$

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} =$$

$$(1) \quad (-C_{i_{k}} + (-C_{i_{$$

$$(8) \qquad (8) \qquad (8)$$

- $(11) \quad (11) \quad$

A LUX A L A LUX A L A LUX A L A LUX A L A LUX A LU

Article 144

Article 145

$$A_{i_{1}} = A_{i_{1}} = A_{i$$

- (2) $\int_{1} \int_{1} \int_{1}$
- $(3) \quad \bigcup_{\mathbf{A}^{(1)},\mathbf{A}^{(2)}}^{\mathbf{A}^{(1)}} \mathbf{A}^{\mathbf{A}^{(2)}} \mathbf{A}^{\mathbf{A}^{(2)}} \mathbf{A}^{\mathbf{A}^{(2)}};$
- $(4) \qquad \mathbf{A}^{\prime} \stackrel{\mathbf{v}}{=} \mathbf{A}^{\prime} \stackrel{\mathbf{v}}{=$

مر بالمربق من القريم بالقريم بالا تحليل من المربق من من بالمربق من من بالالمان من بالمربق من من بالمربق المحليل المربق المرب المربق ا المربق المرب المربق المرب المربق المرب المربق المربة المربق المربة ال 1 A I KKY AND A CAR A CA

Article 148

$$\begin{array}{c} \mathbf{E} & \cdots & \cdots & \mathbf{E} & \cdots & \mathbf{E} & \mathbf{E$$

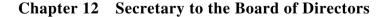
Article 149

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

Article 150

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{k}{2} = \frac{k}{2} = \frac{10}{2} = \frac{10}{2}$$


Article 153

- (3)

(4)
$$\lim_{\lambda \to \infty} \sum_{\lambda \to \infty}$$

Article 154

Article 155

$$\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \left\{ \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow$$

- $(1) \xrightarrow{} (1) \xrightarrow{} (1)$
- $(3) \qquad (3) \qquad (3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$
- $(4) \quad \underbrace{}_{\lambda} \underbrace{}_{\lambda$

$$(6) \qquad \mathbf{I}_{[-1]} \qquad \qquad \mathbf{I}_{\mathbf{k}} \qquad \mathbf{I}_{$$

- $(1) \quad (\tilde{\mathcal{L}}_{\mathbf{x}}, \tilde{\mathcal{L}}_{\mathbf{x}}, \tilde{\mathcal{L$
- $(2) \qquad (1) \qquad (1)$
- $(3) \qquad \underbrace{\mathbf{x}}_{\mathbf{x}} = \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} = \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{x}} \underbrace{\mathbf$
- $(4) \qquad (4) \qquad (4)$

- $(6) \qquad (6) \qquad (7) \qquad (7)$

- $(9) \qquad (1) \qquad (2) \qquad (2)$
- $(10) \quad \dots \quad \mathcal{C}_{[\underline{\mathbf{M}}]^{\mathbf{1}}} \quad \dots \quad \mathcal{C}_{[\underline{\mathbf{M}]}^{\mathbf{1}}} \quad \dots \quad \mathcal{C}_{[\underline{\mathbf{M}]}^{\mathbf{1}}}$

Article 158

Chapter 13 General Manager

Article 161

$$\frac{\partial f_{1}}{\partial t} = \sum_{k \in \mathcal{A}} \frac{\partial f_{2}}{\partial t} = \sum_{k \in \mathcal{A}$$

(2)
$$(\mathcal{L}_{\mathbf{X}^{\vee}\mathbf{Y}})^{\prime} \mathcal{L}_{\mathcal{L}} = (\mathcal{L}_{\mathcal{L}})^{\prime} \mathcal{L} = (\mathcal{L}_{\mathcal{L}})^{\prime} \mathcal{L} = (\mathcal{L}_{\mathcal{L}})^{\prime} \mathcal{L} = (\mathcal{L}_{\mathcal{L}})^{\prime} \mathcal{L} = (\mathcal{L})^{\prime} \mathcal{L} = (\mathcal{L})^{\prime} \mathcal{L} = (\mathcal{L})^{\prime} = (\mathcal{L})^{\prime} \mathcal{L} = (\mathcal{L})^{\prime} = (\mathcal$$

 $(3) \qquad (3) \qquad (3)$

$$(4) \qquad \mathbf{\dot{A}} = \mathbf{\dot{A}} + \mathbf{\dot{A} + \mathbf{\dot{A}} + \mathbf{\dot{A}} + \mathbf{\dot{A}} + \mathbf{\dot{A}} + \mathbf{\dot{A}} +$$

(5)
$$\int_{\mathbf{A}}^{\mathbf{a}} \int_{\mathbf{A}} \int_{\mathbf{A}}$$

$$(6) \qquad (\int_{\mathbf{M}}^{\mathbf{I}} |\mathbf{A}|^{\prime} + \int_{\mathbf{M}}^{\mathbf{M}} \int_{\mathbf{M}$$

- $(7) \quad \mathcal{L}_{\mathbf{A}} = \mathcal{L}_{\mathbf{$
- $(9) = \underbrace{\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)}_{\mathbf{x}} \underbrace{\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)}_{\mathbf{x}} \underbrace{\left(\begin{array}{c} \\ \\ \end{array} \right)}_{\mathbf{x}} \underbrace{\left(\begin{array}{c} \\ \\ \\ \end{array} \right)}_{\mathbf{x}} \underbrace{\left(\begin{array}{c} \\ \end{array}\right$

$$(10) \quad , \quad \mathcal{A}_{\mathcal{M}}^{\mathcal{M}} , \quad \mathcal{A}_{\mathcal{M$$

 $\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} \sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{$

Article 162

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

⊠ 51 ⊠

$$(1) \qquad (1) \qquad (1)$$

Article 164

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Chapter 14 General Counsel

Article 165

Chapter 15 Board of Supervisors

Section 1 Supervisors

Article 167

$$= \sum_{\mathbf{M}} \sum_{\mathbf{M}$$

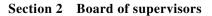
Article 168

$$\mathbf{A} = \{ \mathbf{f}_{1} \in [\mathbf{f}_{1}] : \mathbf{f}_{2} \in [\mathbf{f}_{2}] : \mathbf{f}_{2} \in [\mathbf{f}_{2$$

Article 169

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Article 170


$$\mathbf{A}_{1} = \mathcal{C}_{\mu}, \mathcal{C}_{\mu} = \mathbf{A}_{1} = \mathcal{C}_{\mu}, \mathbf{A}_{\mu} = \mathbf{A}_{\mu}, \mathbf{A}_{\mu} = \mathbf{A}_{$$

Article 171

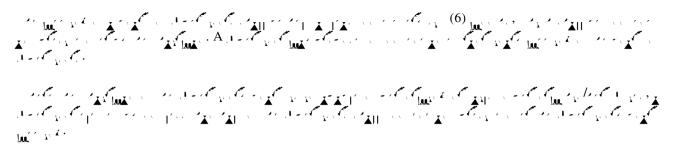
Article 172

$$\begin{array}{c} \mathbf{A}_{1} = - \left(\sum_{k \in \mathcal{A}_{1}} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2}} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}_{2} \left(\sum_{k \in \mathcal{A}}$$

Article 173

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Article 176


 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Article 177

- $= \sum_{i=1}^{n} \sum_$
- $2. \qquad (1 i i) (1 i) (1$
- 3. <u>Internet and a second a second a</u>
- $5. \qquad -\mathcal{C}_{-1} + \mathcal{C}_{-1} + \mathcal{C}_{-1}$
- 6. I have a final second sec

- 8. $\int_{\mathcal{A}_{1}}^{\mathcal{A}_{1}} \int_{\mathcal{A}_{1}}^{\mathcal{A}_{1}} \int_{\mathcal{A}_{1}}^{\mathcal{A}_{1}}$
- 9. (1 + 1) +
- $10. \qquad \mathbf{A}^{(n)}_{\mathbf{A}^{(n)}$

⊠ 54 ⊠

Article 179

 $\frac{\mathbf{k}_{1}}{\mathbf{k}_{2}} = \frac{\mathbf{k}_{1}}{\mathbf{k}_{2}} = \frac{\mathbf{k}_{2}}{\mathbf{k}_{2}} = \frac{\mathbf{$

Article 180

 $\begin{array}{c} \mathbf{A}_{\mathbf{h}\mathbf{u}'} = \mathbf{v} \mathbf{A}_{\mathbf{v}} = \mathbf{v} \mathbf$

Article 181

 $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

Article 182

- (1) $\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{y}^{\prime},$
- (2) $\mathcal{C}_{\mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \mathbf{x}^{$
- $(3) \qquad \mathbf{A}^{\prime} \cdot \mathbf{A}^{\prime} \cdot \mathbf{A}^{\prime} \mathbf{A}^{\prime} \cdot \mathbf{A}^$

⊠ 55 ⊠

$$= \sum_{k=1}^{n} \sum_$$

Article 184

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Chapter 16 Qualifications and Obligations of the Company's Directors, Supervisors and Other Senior Management

Article 185

- $\begin{array}{c} \mathbf{A}_{\mathbf{a}} \in \mathcal{C}_{\mathbf{a}} \\ = \sum_{\mathbf{a}} \sum$
- 1. A Constant A State of State
- $2. \qquad \mathbf{x} = \mathcal{E}_{\mathbf{x}} + \mathbf{x} + \mathbf{h} = \mathbf{h} + \mathbf{$
- $3. \qquad \mathbf{x}^{-1} \overset{\mathbf{x}}{\longrightarrow} \overset{\mathbf{x$
- 4. $\mathbf{x} = (\mathbf{x}_{1}, \dots, \mathbf{x}_{k}) \in \mathbf{M} \quad (\mathbf{x}_{k}) = (\mathbf{x}_{1}, \dots, \mathbf{x}_{k}) = (\mathbf{x}_{1}, \dots$
- 5. $\mathbf{x} = \mathbf{x} = \mathbf{x} + \mathbf{x}$
- 6. **A** Contraction of the state of the sta
- 7. Zordan and the state of the second s
- 8. $\mathbf{x} = \mathbf{x} = \mathbf{x}$

⊠ 56 ⊠

$$10. \qquad (10) \qquad ($$

Article 186

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1$$

Article 187

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$

- $1, \dots, \dots, \mathbf{1} \in \mathcal{I} \subseteq \{\mathbf{1}_{k}, \mathbf{2}_{k}, \mathbf{2}_{k},$
- 2. A start for some in the second start is

Article 188

$$\begin{array}{c} \mathbf{E} \\ \mathbf{A} \\ \mathbf$$

Article 189

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

- 1. A sure for some in the constant of the second se
- 2. I show the show th

⊠ 57 ⊠

$$4. \qquad , \qquad \overset{\mathcal{M}}{=} \quad \overset{\mathcal{M}}$$

- 5. $(A_{k}) = (A_{k}) =$
- $6. \qquad (1, \dots, 1) \qquad$
- 8. $(1 + 1) = \frac{1}{2} + \frac$
- 9. $\sum_{k=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- $11. \quad \dots \quad \lim_{\mathbf{x} \to \infty} \mathbf{x}^{-1} \mathbf$
- $12. \qquad (A_{1}, A_{2}, A_{2},$
- $14. \qquad (1 + 1) + (1 + 1)$
 - $(1) \quad \overbrace{}^{\bullet}_{\lambda} \quad \overbrace{}^{\bullet}_{\lambda} \quad \overbrace{}^{\bullet}_{\mathbf{k}} \quad ;$
 - $(2) \qquad \mathcal{C}_{\mathbf{0}^{1}} \stackrel{\mathcal{C}_{\mathbf{0}^{1}}}{\longrightarrow} \stackrel{\mathcal{C}_{\mathbf{0}^{1}}}{\longrightarrow$
 - $(3) \quad \mathcal{C}_{\bullet} \mathbf{1}_{X} \mathcal{C}_{\bullet} \mathbf{1}_{X} \mathcal{C}_{\bullet} \mathbf{1}_{X} \mathcal{C}_{\bullet} \mathbf{1}_{X} \mathcal{C}_{\bullet} \mathbf{1}_{X} \mathcal{C}_{\bullet} \mathcal{C} \mathcal{C}_{\bullet} \mathcal{C}_{\bullet} \mathcal{C}_{\bullet} \mathcal{C}_{\bullet}$

 $\frac{\partial f_{1}}{\partial t} = \frac{\partial f_{1}}{\partial t} + \frac{\partial f_{2}}{\partial t} + \frac{\partial f_{2}}$

$$\underbrace{\mathbf{E}}_{\mathbf{A}} = \underbrace{\mathbf{A}}_{\mathbf{A}} \underbrace{\mathbf{A}} \underbrace{\mathbf{$$

$$1. \qquad \qquad 1. \qquad 1. \qquad \qquad 1.$$

5.
$$\sum_{\lambda \in \mathcal{A}} \left\{ f_{\lambda} = f_{\lambda} \left\{ f_{\lambda} \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \left\{ f_{\lambda} \right\} \right\} \left\{ f_{\lambda} = \lambda \left\{ f_{\lambda} \in \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} \in \lambda \left\{ f_{\lambda} \in \lambda \left\{ f_{\lambda} \right\} \left\{ f_{\lambda} \in \lambda \left\{ f_{\lambda} \in \lambda$$

Article 191

Article 192

 $\mathbf{E} = \left\{ \begin{array}{cccc} \mathbf{E} & \mathbf{E$

Article 193

Construction of the second se $\begin{array}{c} \mathbf{A} = \left\{ \mathbf{f}_{1} = \left\{ \mathbf{f}_{2} \in \left\{ \mathbf{f}_{1} = \left\{ \mathbf{f}_{2} \in \left\{$

and the Contraction of the manual of the second of the sec

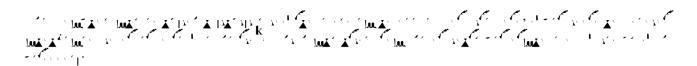
Article 195

Article 196

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$$

Article 197


 $\begin{array}{c} \mathbf{A} \\ \mathbf$

$$\begin{array}{c} \mathbf{A}_{[1,\mathbf{z})} \in \mathbf{A}_{\mathbf{z}} \underbrace{\mathbf{A}}_{[1,\mathbf{z})} = \underbrace{\mathbf{A}}_{\mathbf{z}} \underbrace{\mathbf{A}}_{[1,\mathbf{z})} = \underbrace{\mathbf{A}}_{[1,\mathbf{z})} \underbrace{\mathbf{A}}_{\mathbf{z}} \underbrace{\mathbf{A}}_{[1,\mathbf{z})} = \underbrace{\mathbf{A}}_{\mathbf{z}} \underbrace{\mathbf{A}}_{[1,\mathbf{z})} \underbrace{\mathbf{A}}_{\mathbf{z}} \underbrace{\mathbf$$

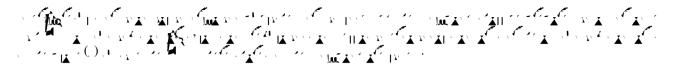
Article 199

$$= \frac{1}{2} \sum_{i=1}^{n} \frac{$$

- $\frac{1}{|\mathbf{u}_{\mathbf{x}}|} = \frac{1}{|\mathbf{x}_{\mathbf{x}}|} = \frac{1}{|\mathbf{x}_{\mathbf{x}}|} = \frac{1}{|\mathbf{x}_{\mathbf{x}}|} = \frac{1}{|\mathbf{u}_{\mathbf{x}}|} = \frac{1}{|\mathbf{u}_{\mathbf{x}}|}$
- 3. $\int u d v = \int \int d v = \int \int d v = \int \int d v = \int \int d v = \int \int \partial u = \partial u =$
- 4. $C_{1} = C_{1} = C$
- $6. \qquad \overset{\mathbf{k}}{\mathbf{x}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}{\mathbf{x}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}{\overset{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}} \stackrel{\mathbf{k}}{\overset{\mathbf{k}}}} \stackrel{\mathbf$

Article 204

Article 205


Article 206

Article 207

 $\begin{array}{c} \mathbf{A} & \mathbf{21} & \mathbf{A} & \mathbf$

Article 210

Article 211

$$\begin{array}{c} & & \\ & &$$

Article 212

$$\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n$$

Article 213

 $\mathcal{M} = \mathcal{M} =$

⊠ 64 ⊠

$$\begin{array}{c} \mathbf{k} = \mathbf$$

$$= \frac{1}{4} \frac{$$

Article 215

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$$

- 1.
- 2.

 $\begin{array}{c} \mathbf{A}_{1} = \left\{ \mathbf{A}_{1} = \left\{ \mathbf{A}_{2} = \left\{ \mathbf{A}_{2}$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$$

Article 216

Article 219

Chapter 18 Appointment of an Accounting Firm

Article 220

Article 221

Article 222

$$\mathbf{A}_{\mathbf{x}} = (\mathbf{1}_{\mathbf{x}}, \mathbf{1}_{\mathbf{x}}, \mathbf$$

- 3. A CAR A C

 $= \sum_{i=1}^{n} \sum_$

Article 224

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

Article 225

 $= \sum_{i=1}^{n} \sum_$

Article 226

میں میں ایک میں کر بیان کے بند کا میں کا ایک کر ایک ایک کا میں کا جاتے ہیں کی مرتب کا کہ ایک کی ایک کا میں کا م ایک ایک مرکب بیان کا ایک پی میں کہ میں بیان کی میں کہ ایک کی جاتے ہیں ہیں ہیں ہیں ہیں کہ کہ میں ایک بیان کا میں

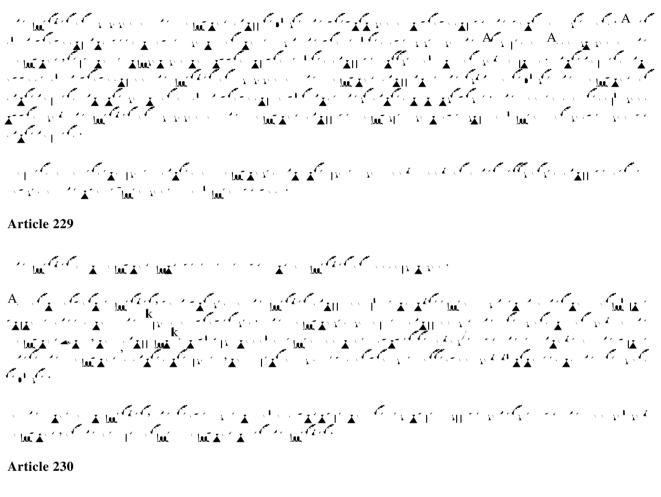
- $(1) \qquad (1) \qquad (1)$
- - $2. \qquad \underbrace{(\mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{z}_{3}, \mathbf{z}_{$

⊠ 67 ⊠

- $(4) \qquad \qquad \mathbf{\lambda} \quad (\mathbf{1} \quad \mathbf{\lambda} \quad \mathbf{\lambda}$
 - 1. $(\mathbf{x}_{\mathbf{x}_{1}}, \mathbf{x}_{\mathbf{x}_{2}}, \mathbf{x}_{\mathbf{x}_{2}},$

 - 3. I trade the second of the second s

 $\mathbf{x} = \left\{ \begin{array}{c} \mathbf{x} = \left\{ \mathbf{x} \\ \mathbf{x$


Article 227

- - $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1$
 - 2. $\mathbf{x} = \mathbf{x} + \mathbf{x}$

Chapter 19 Merger, Division, Dissolution and Liquidation

Section 1 Merger and Division

Article 228

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 231

 $= \int \left[\frac{1}{2} \left[\frac$

Section 2 Dissolution and Liquidation

Article 232

$$(1) = \mathbf{A}_{\mathbf{x}_{1}} \cdot \mathbf{A}_{\mathbf{x}_{2}} \cdot \mathbf{A}$$

Article 233

 $\begin{array}{c} & A \stackrel{(a)}{\longrightarrow} 232 \quad (4) \\ & A \stackrel{(a)}{\longrightarrow} 4 \stackrel{(a$

Article 234

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

 $\frac{1}{|\mathbf{x}_{i}|^{2}} = \frac{1}{|\mathbf{x}_{i}|^{2}} = \frac{1}{|\mathbf{x}_{i}|^{2}}$

$$\frac{1}{2} \left[\frac{1}{2} \left$$

Article 236

$$(1) \qquad \lim_{\lambda \to \infty} \sum_{\lambda \to \infty$$

Article 237

 $= \int_{\mathcal{M}} \int_{\mathcal{M}}$

Article 239

 $= \left[\left[\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{-1} \right] \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \right] \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \right] \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \left[\left(\begin{array}{c} 1 \end{array}\right)^{-1} \left[\left(\begin{array}{c} 1 \\ 2 \end{array}\right)^{-1} \left[\left(\begin{array}{c} 1 \end{array}\right)^{-1} \left[\left(\begin{array}{c$

Article 240

$$\mathbf{k} = \mathbf{k} + \mathbf{k} +$$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

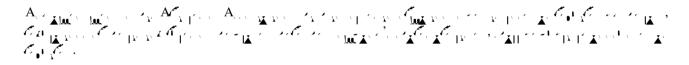
Chapter 20 Amendment to Articles of Association

Article 241

Article 242

$$= \mathbf{A}^{\mathbf{A}} + \mathbf{A}^{\mathbf{A}}$$

⊠ 72 ⊠


Article 244

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$$

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

- $(2) \qquad (2) \qquad (3) \qquad (4) \qquad (4)$

Article 245

Article 246

and a second second

- (1) (1) (1)
- (2) ;
- $(4) \qquad (4) \qquad (4)$
- (5) $(1) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1$

⊠74⊠

Chapter 22 Settlement of Disputes

Article 250

- $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
- $(1) \qquad (1) \qquad (1)$

 $= \sum_{i=1}^{n-1} \sum_{i=1}^{n-1$

 $= \frac{1}{2} \sum_{i=1}^{N} \frac{$

Definition

- $(2) = A_{(-1)} = (1 + 1) + (1 + 1)$

Article 252

Article 253

$$\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$$

Article 254

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$$